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VI

CONVERSION FACTORS, NON-SI TO METRIC (SI)
UNITS OF MEASUREMENT

Non-SI units of measurement used in this report can be converted to SI (metric)

units as follows:

Multiply -By To Obtain

degrees Fahrenheit toC = (t0F - 32)/1.8 degrees Celsius

feet 0.3048 metres

inches 2.54 centimetres

microinches per inch 1.0 micrometres per metre

pounds (force) per 6.89476 kilopascals
square inch

pounds (force) per 16.01846 kilograms per cubic metre
cubic foot

pounds (force) per 0.59327642 kilograms per cubic metre

cubic yard
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CONCRETE BEHAVIOR UNDER DYNAMIC

TENSILE-COMPRESSIVE LOAD

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

The Corps of Engineers is directly responsible for the seismic safety of

many concrete gravity dams and by its practice influences the safety of many

more structures it owns. To fulfill this responsibility economically, the

strength and stress-strain behavior of mass concrete under the multiaxial and

dynamic states of stress induced by earthquake motions must be known. This re-

port describes an investigation undertaken to improve the knowledge of this be-

havior. The results should also be of some value in assessing the response of

various concrete structures to blast, wave, wind, and other dynamic loadings.

1.2 PREVIOUS RESEARCH

During a strong motion earthquake, it is generally believed that the

individual monoliths of a concrete gravity dam will vibrate independently

of one another (Chopra 1978). Accordingly, the mass concrete of each mono-

lith is subjected to a nonuniform dynamic stress, which can be approximated

by a plane stress condition. It follows that an understanding of mass con-

crete material behavior under such conditions is a prerequisite for any

assessment of a gravity dam's seismic safety. Furthermore, the available

information on the dynamic properties of structural concrete should be

reviewed as well. Although structural concrete does not possess the thermal

cracking problems during curing to the extent that mass concrete does, the

stress-strain relations of the two materials appear to be similar (ACI

1963, 1970)."

Both the uniaxial and even the biaxial material behavior of concrete

seems to be reasonably understood under statically applied loads. Accepted

experiments have been conducted on thin plates loaded in plane (Kupfer, Hils-

dorf, and Rusch 1969), on thin hollow cylinders loaded axially and by internal

pressure (McHenry and Karni 1958), and on thin hollow cylinders loaded axially

and in torsion (Bresler and Pister 1958, Goode and Helmy 1967). The results

of these tests have established the biaxial stress combinations at which

'4i



concrete fails as well as its stress-strain behavior from no load through

failure. Elastic, incrementally plastic theories of mechanical behavior have

been subsequently proposed (Ottosen 1977, Chen and Chen 1975) which are con-

sistent with and rationally generalize these experimental results, as shown

in Figure 1.1.

The dynamic material behavior of concrete has only been reported for uni-

axial states of stress. A number of experiments on cylinders monotonically

loaded in compression (Watstein 1953, Hatano and Tsutsumi 1959, Atchley and

Furr 1967, Kirillov 1977) and in tension (Hatano 1960, Raphael 1975) have been

reported. One can generally conclude from this work that the strength and

stiffness of concrete increase with increasing strain rate while the failure

strain is unaffected by the rate of straining, as seen in Figure 1.2. Some

experiments have also been conducted on cylinders cyclically stressed in

compression (Ban and Muguruma 1960, Hatano and Watanabe 1971, Takeda and

Tachikawa 1973) and in tension (Saucier 1977). These results suggest that

the strains at failure may be independent of the history of stresses and

strains.

However, no experimental information has been published describing the

biaxial, dynamic material properties of concrete. An analytical thesis of

concrete dam behavior, in which reasonable bounds for these unknown properties

were assumed, suggests that the extent of cracking induced by seismic ground

motion can be very sensitive to these assumptions (Pal 1974). Although these

must eventually be defined under cyclic and reversible strains representative

of earthquake induced vibrations, logically they must first be experimentally

measured for monotonic loadings. These must also be known in all quadrants

of the biaxial space. But an understanding of biaxial tension-compression be-

havior is the foremost concern, since the stress state of a dam's cracked

regions occur in this quadrant.

1.3 SCOPE

Accordingly, the scope of this first experimental investigation of con-

crete dynamic, biaxial material behavior is confined to monotonic, tension-

compression loadings. In the following chapters of this report, the experi-

mental procedure will be detailed, the test results will be discussed, and

suggestions for further study of this behavior will be offered.
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CHAPTER 2

PROCEDURE

A number of techniques to measure the dynamic, biaxial material behavior

were critically examined in the design of this experiment. These included

thin square plates loaded in plane; hollow cylindrical specimens loaded by

pressure, torque, and thrust; rhomboidal sandwich plates loaded anticlastically

(having opposite curvatures); solid cylindrical specimens loaded radially and

axially; and beams loaded laterally. The comparison concluded that practically

significant data about monotonic, tensile-compressive properties could econom-
a

ically be gathered using hollow cylinders of 3000 psi, 3/8-inch maximum size

aggregate loaded in axial compression and internal pressure by a quickly modi-

fied hydraulic device existing at the WES.

2.1 SPECIMENS

As shown in Figure 2.1, the experimental specimen was a hollow right cir-

cular cylinder of 13-inch inner diameter, 1-inch wall thickness, and 26-inch

height. The specimen's radius-to-wall thickness ratio, 6.5, is high enough

to assure an elastic distribution of tensile hoop stress that is uniform to

within 8 percent (Timoshenko 1941). Reasonable static results were reported

in McHenry and Karni (1958), which were obtained from a similar specimen having

a less uniform distribution corresponding to a radius-to-thickness ratio of

2.5. This study's height-to-outer diameter ratio matches that of McHenry

and Karni (1958) to give a uniformly stressed central region uninfluenced by

the boundary conditions at the ends of the specimen. This height is also small
3 6

enough that the transit time (<0.2 ms (millisecond) for 155 lb/ft , 5 x 10 psi

modulus concrete) for axial-stress waves is virtually instantaneous in compari-

son to the loading rise times of interest (>25 ms).

The constituents of concrete mixture used for these specimens are given

in Table 2.1. This mixture was selected to have a nominal 90-day compressive

strength of 3000 psi. The maximum aggregate size was restricted to 3/8 inch

to duplicate the ratio of the parameter-to-specimen wall thickness used in

McHenry and Karni (1958). The aggregate size distribution, shape, and mineral

a A table of factors for converting non-SI units of measurement to metric

(SI) units is given on page 3.
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content of this mix were otherwise chosen to be as representative as possible

of mass concrete. All cement and aggregates for all the specimens were

blended together in a single common dry batch to minimize the variation of

concrete strength among the lots of specimens.

The specimens were cast in lots of five, in steel molds, mounted on a vi-

brating table. These molds were removed after 48 hours and prepared for re-

use. The specimens were then cured until 28 days old in a fog room. There-

after, until testing at approximately 90 days age, the specimens were sealed

within plastic bags at ambient temperatures less than 85*F. Before each test,

the inside surface of the cylinder was thinly coated with an epoxy to prevent

the intrusion of water into the wall, under pressure. An epoxy cap was also

cast at both ends of the cylinder to provide a smooth surface for the O-ring

seals, as shown in Figure 2.1.

2.2 LOADING

All loadings were applied by the WES 200 kip-loader (shown in Figure 2.2)

which can apply monotonic loadings with rise times as fast as I ms (Balsara

and Hossley 1973). This simple and inexpensive open-loop hydraulic device

employs a silicone oil as the working fluid. Static loads are applied by

slowly pressurizing the upper chamber while maintaining little or no pressure

in the lower chamber. Dynamic loads are generated by pressurizing the upper

chamber to a level greater than the lower one and then suddenly releasing the

fluid through the orifice shown. The shape of the loading-versus-time curve

thus created is obviously a complex function of fluid pressure, fluid volume,

orifice opening, and specimen stiffness which cannot be controlled with abso-

lute precision. However, it is possible to satisfactorily generate nominal

peak loads and rise times after some preliminary calibrations.

The special aluminum fixtures, shown in Figure 2.1, were fabricated to

mount the concrete specimens in the 200-kip loading device. The top fixture

incorporated two valved openings so that the specimen could be filled with

water in such a way that no significant. air was entrapped. The bottom fixture

contained mounts for two pressure transducers. A satisfactory seal between

each fixture and the specimen was established with O-rings.

Thus, the hydraulic ram's loading was carried in part by an axial com-

pression in the specimen and in part by a pressurization of the contained

water, which simultaneously loaded the specimen in circumferential tension.

9
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Three nominally different proportions of compressive and tensile loadings wcrc

achieved by inserting a 1/4-inch thick, a 1/16-inch thick, or no rubber pad

between the top fixture and the specimen (Figure 2.1), so as to effectively

change the relative stiffness of the two parallel load paths seen by the ram.

A uniaxial compressive loading was also achieved by simply not filling the

specimen with water. Finally, an essentially uniaxial tensile condition re-

sulted when the specimen was overfilled so that tVo top fixture bore only on

the water surface.

2.3 INSTRUMENTATION

The total load-versus-time function, applied by the hydraulic ram in each

test, was measured by the load cell shown under the bottom fixture in Fig-

ure 2.3. The sensing element of this cell is a hollow column. Two axial and

two transverse strain gages on this column were wired to form a fully active

Wheatstone bridge circuit.

The water pressure inside each cylinder was independently measured by two

identical pressure gages in the bottom fixture. Each gage's sensing element

was a 0.1-inch-diameter steel diaphragm containing four semiconductor strain

gages in a fully active four-arm Wheatstone bridge.

Three independent measurements each of axial strain, outer circumferen-

tial strain, and inner circumferential strain were made on each specimen, as

shown in Figure 2.4. Each of these nine measurements was made with a single

6-inch-long, constantan alloy, wire gage.

The signals from all twelve of these channels were simultaneously re-

corded on FM magnetic tape during each test. A corresponding digital magnetic

tape was subsequently produced for later reduction of these data, as described

in Chapter 3.

2.4 CONTROL CYLINDERS

Six conventional 6-by-12-inch control cylinders were cast with each lot

of hollow cylinders and were cured under the same conditions. Four of the

control cylinders were statically tested in compression (ASTM C 39-72) to

measure strength, axial strain, and transverse strain (ASTM 1972). The re-

maining two cylinders were statically tested in direct tension (ASTh D 2936-78)

to measure strength and axial strain (ASTM 1978).

10



Table 2.1. CuisLU~eULS Of coicete ffixture.

constituent 
l/d

Portland Cement, Type 16400

Sand, Limestone 1600

Rack, Limestone 3/8 in maximum 16

a '~~Water37
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Figure 2.1 Biaxial test specimen and loading fixture.
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CHAPTER 3

RESULTS

Eight lots of five hollow cylindrical specimens each were produced. Of

these, twenty-nine appeared to be of adequate quality to test. Eleven of the;e

tests were invalid because the specimen's state-of-stress did not appear to be

uniform before failure. The dynamic, biaxial loading condition and the spec-

imen lot of the 18 tests considered to be successful are listed in Table 3.1.

These conditions include static, biaxial, and dynamic uniaxial states compar-

able to previously published results of other researchers, as well as dynamic.

biaxial states heretofore untested.

For each test, the data recorded on magnetic digital tape were reduced

with the aid of the WES central computer system as follows. Individual plots

of the load cell, the two pressure transducers, and the nine strain gages (as

a function of time) were first examined to eliminate invalid recordings. The

compressive stress function of time o (t) was then computed by dividing the

net force carried in the cylinder wall by its cross-sectional area, i.e.

P(t) 2 p(t)

Gc~t = 2 2
7 (r ° - r i )

in which

P(t) = load function measured by load cell

p(t) = average of valid pressure transducer measurements

r. = specimens inner radius (6.5 inches)1

ro = specimens outer radius (7.5 inches)

The tensile stress was calculated from the thin-walled approximation

(Timoshenko 1941):

r.r p(t)G t(t) = r r pr.

0 1

The compre3sive c (t) , outer tensile cto(t) , and inner tensile c M(t)

strain functions of time were estimated by the mean of the valid measurements

of each strain.

These results are shown in FigurP'; 3.1 through 3.18. The (a) part of

16



each figure depicts the reference stress versus time function. This reference

stress is the compressive stress c (t) except for the uniaxial tensile tests

in which it is t(t) . The (b) portion of each figure then shows how the

other stress varied with respect to the reference stress. The strain behavior

as a function of the reference stress is next presented in part (c). Finally

the (d) part of each figure is a photograph of the failed specimen, if

available.

From an examination of these plots, the magnitudes of compressive ac
and tensile Yt stress at failure were judged, as indicated for each speci-

men, and listed in Table 3.2. The time since load application at which this

failure occurred tr , the compressive strain magnitude zc , and the average

&t of the inner and outer tensile strain magnitudes at failure are also pre-

sented in this listing. The last column qualitatively indicates whether the

failure was "compressive" (accompanied by the complete disintegration of the

specimen) or "tensile" (characterized by a single longitudinal cleavage).

The results of the 6- by 12-inch control cylinder tests appear in Ta-

ble 3.3. For those specimens tested in static, uniaxial compression, the max-

imum stress a and corresponding compressive c and tensile t strains
c ct

are given. For the cylinders loaded in static, uniaxial tension, the maximum

stress at and corresponding strain E. are listed.

17



Table 3.1. Dynamic tLeasion-compression test conditions.

b Age
Testa'- Days Lot

I-i91 a

1-2 93 a

1-3 94 a

1-4 88 b

11-1 106 d

11-2 83 e

11-4 106 e

11-5 107 d

111-1 90 b

III-2A 98 d

111-4 84 c

III -4A 11h

111-5 85 c

IV- 1 112 d

IV- 2 81 f

IV-3 112 h

V-1 93 g

v-4 96 g

a Dynamic conditions of 200-kip loader: I-Static; II--O.082-inch orifice with

solenoid valve; 111-0.182-inch orifice with solenoid valve; IV--0.4375-inch

borifice with solenoid valve, and; V-1.1875-inch orifice with rupture disc.
bBiaxial conditions of loading fixture: 1--No water, no insert; 2--Water, no

insert; 3--Water, 0.0625-inch insert; 4--Water, 0.25-inch insert, and;
5--Water, fixture off cylinder.

18



Table 3.2. DynaiC LeuLSiou-compression test results.

t r G tC&t Type of

Test -ms- Psi psi pin/in pin/in Failure-

1-1 600000* 3060 0 1340 440 Compressive

1-2 600000* 2620 50 742 158 Tensile

1-3 600000* 1180 145 265 88 Tensile

1-4 600000* 920 121 230 77 Tensile

11-I 1420 2600 0 1185 160 Compressive

11-2 1160 1920 35 480 110 Compressive

11-4 630 425 295 110 110 Tensile

11-5 273 0 372 15 105 Tensile

111-1 1070 3780 0 1055 500 Compressive

III-2A 440 2580 21 690 155 Tensile

111-4 54 26 340 20 60 Tensile

II-4A 102 270 305 80 100 Tensile

111-5 170 58 325 40 65 Tensile

IV-1 69 2530 0 790 220 Compressive!

IV-2 188 2840 73 990 385 Compressive

IV-3 50 1080 350 280 150 Tensile

V-1 25 3700 0 1240 355 Compressive

V-4 270 500 440 120 205 Tensile

*Static.

19



Table 3.3. Static control cylinder test results.

°Y G°t E; t °C °t t

Lot Specimen psi psi pin/in pin/in Lot Specimen psi psi pin/in pin/in

a 1 3520 2050 800 e 25 3100 2200 700

2 3630 1950 700 26 3080 2100 1000

3 3450 2100 1300 27 3130 2200 1000

4 3570 2100 900 28 3110 2100 750

5 290 60 29 340 95

6 320 60 30 375 100

b 7 3710 2350 1100 f 31 3020 2300 1000

8 3700 2150 1000 32 3100 2550 1250

9 3500 2200 1000 33 2880 2550 1000

10 3590 2300 1200 34 2940 2450 880

11 310 65 35 320 90

12 230 55 36 360 90

c 13 3540 2500 900 g 37 3250 2050 1400

14 3400 2100 700 38 3270 2150 800

15 3430 2400 950 39 3220 2300 1200

16 3430 2500 900 40 3180 2150 1100

17 305 70 41 250 60

18 335 85 42 255 60

d 19 3560 2300 1250 h 43 3250 2600 1500

20 3590 2300 900 44 3200 2200 1000

21 3430 2300 900 45 3020 2300 1000

22 3660 2200 1000 46 3180 2300 1000

23 245 55 47 390 90

24 360 95 48 270 85

20
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Figure 3.1 Results of Test 1-1.
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Figure 3.3 Results of Test 1-3.
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BIRXIRL TEST 1-4
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Figure 3.4 Results of Test 1-4.
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Figure 3.5 Results of Test 11-1.
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BIRXIRL. TEST 11-2 BIRXIRL TEST 11-2
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Figure 3.6 Results of Test 11-2.
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BIRXIAL TEST 11-4 BIAXIRL TEST 11-4
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Figurc 3.7 Rec,.!ts of Test1-4
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Figiire 1.8 Results of Test I-5.
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BIRXIRL TEST 11I-I
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Figure 3.9 Results of Test Ill-1.
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BIRXIRL TEST 1II-2R BIRXIRL TEST III-2A
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Figure 3.10 Res~lts of Tpst. 111-2A.
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BIRXIRL TEST 111-4 BIRXIRL TEST 111-4
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Figure 3.11 Results of Test 1II-4.
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BLRXIRL. TEST I1I-4R BIRXIRL TEST III-4AR

LORD HISTORY LORD RRTIO

3'IZI 6631A *ati 06/ZI lS2 6Si, l4t2. .

oT

J---- -- o

- -- '

C,,

-C c . . , 0 0 . .50 o -Z %0 00 350 40 450 50C

, - stc TENSILE STRESS - PSI

a. Dynamic load b. Biaxial load

BlRXRIL TEST ll-4R
STRESSES VS STRRINS

P21 - NN[T 1iNILf SIT0IN

, .. 5 1 11

4 --

TENSION 0 I cKts r I IN COMPRESSION

c. Strain d. Failed specimen

Fig,,re 3.12 Results of Test TI1-4A.
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BIRXIRL TEST 111-5 BIRXIRL TEST 111-5
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Figure 3.13 Results of Test 111-5.
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Figure 3.14 Results of Test IV-1.
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Figure 3.15 ResuIts of Thst IV-2.
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Figure 3.17 Results of Test V-1.
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LCOAD HISTORY LORD RATIO

so .0 a 0 S 0 S . Oc s s , lc 30 4C &O 0

T-Mt 0 ?NS C TR S -7 PS
I N_

4 2 1

B4

- - - - - - - -- - - - - - - -- - - - - - -

,c M Mc !c c ;c -0 !C c '

TE- IEC T!NSIIC STRESS - PSI

a. Dynamic load b. Biaxial load

BIFuI3L TEST V-T
STRESSES VS STRRINS

-| OUTIR TLNOLI| STRRAIN

f21 - INNr T|N5IIF STR(N
3, - coflCR SSIvr STRr4IN

TENSION flTCNC INCHr% Pro TN COMPESSION

c. Strain d. Failed specimen

Figure 3.18 Re~iults nf Te~t V-4.
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CHAPTER 4

DISCUSSION

4.1 CONTROL CYLINDERS

The distribution of control cylinder compressive strength, by lot, is

shown in Figure 4.1. The 3333-psi grand mean is 11 percent above the nomi-

nally desired 90-day strength. It is noted that lots a-d appear stronger than

e-h for no plausible reason. The 7 percent coefficient of variation (COV) in-

dicates that reasonable uniform quality was attained among lots. Nonetheless,

the control cylinder tensile strengths (in Figure 4.2) have a grand mean which

is a plausible 9 percent of the average compressive strength. Notice the

16 percent COV for tensile strength, which suggests this parameter is more

variable than the compressive strength. The distributions of strain-at-failure

appear in Figures 4.3 through 4.5. It appears that failure strains vary more

under identical conditions than do failure stresses.

4.2 FAILURE MODES

The failure modes of the dynamic specimens are shown as a function of

their biaxial-stress state in Figure 4.6. Those specimens loaded in uniaxial

compression disintegrated completely and explosively under the dynamic load-

ing. On the other hand, single longitudinal cleavage failures occurred in

those specimens loaded significantly in tension. The transition from com-

pressive failure to tensile failure is rapid as the percent of tension in-

creases. These observations are consis.tent with those of the static tests by

McHenry and Karni (1958) and Kupfer, Hilsdorf, and Rusch (1969).

4.3 STRENGTH DATA

To interpret the dynamic, biaxial strength results in Table 3.2, a step-

wise statistical-regression procedure was conducted, as described in Draper

and Smith (1966). The form of this regression equation was taken to be linear

between oc and at  for constant tr V which approximates the accepted

static, tension-compression behavior in Figure I.]. The form of the equation

was also assumed to be linear with respect to kn tr for a constant c/a t

ratio which agrees with previous uniaxial, dynamic findings in Figure 1.2.

The result of the re',ression analysis, shown in Figure 4.7, is
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t < t < 25ms
a a t s r

C r- +- t = I - 0.02503 kn--± So (1)
cs ts s

0 >0,o t>0
C-

in which

O = compressive stress at failureC

a = estimated static uniaxial compressive strength = 2520 psi

at = tensile stress at failure

ats = estimated static uniaxial tensile strength = 325 psi

t r= time since load application at which failure occurs

t s= time of static load application = 600,000 ms

s = standard error of estimate = 0.2321a 2

The square of the regression's multiple correlation coefficient, r = 0.8254

indicates that all but 17 percent of the strength variability in Table 3.2 is

explained by this equation. In light of control cylinder strength variability

in tension, much of this residual variability may represent material differ-

ences in the concrete. Neither acs nor a ts agrees identically with the

corresponding measured uniaxial static strength. This is of no particular

significance, since these estimates were selected to fit all the biaxial dy-

namic measurements.

In Figure 4.8, the biaxial aspect of the regression is compared with the

dynamic data, previous static theory, and the control cylinders. Note that the

strength axes in this figure have been factored by the dynamic effect of the

regression equation, I - 0.02503 Zn t r/t . This removal of dynamic depen-

dence causes the data to scatter less than in the unfactored plot of Fig-

ure 4.6. The factoring also reduces the regression equation from the family of

lines shown in Figure 4.7 to a single line centered in the data. To within the

data's accuracy, the results are seen to be consistent with a static theory

previously shown in Figure 1.1 to represent existing static data. Also, to

within the dynamic data's scatter, the regression's estimated uniaxial stengths

are in agreement with the control-cylinder results.

Figure 4.9 illustrates the dynamic side of the regression result. The

ordinate of this graph measures the biaxial strength in the form assumed by the

regression. In spite of the dynamic data scatter, there is seen to be some

logarithmic dependence of biaxial strength on the loading time t which isr

explained by the regression equation. This behavior agrees with previous
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uniaxial, dynamic results to the extent shown. The dynamic results are con-

sistent with the control cylinder tests as well.

Practically speaking, the regression equation 1 and Figure 4.7 indicate

that the biaxial strength increases significantly under dynamic loading. For

example, a gravity dam with a fundamental period of 0.2 second would have its

loading applied during an earthquake in approximately t = 0.2 sec/4 = 50 msr
If the structure's concrete material were similar to that studied therein, one

could expect biaxial strengths from equation 1 that are about 24 percent

greater than static values. However, this increase should be used cautiously

as the standard error of this estimate is 23 percent.

4.4 STRAIN DATA

A stepwise-regression analysis was also performed on the strains-at-

failure given in Table 3.2. The result illustrated in Figure 4.10 is

t < t < 25 mss r
__ tC t ±s , > 15 pin/in (2)S S S c
Ccs ts

E > 60 pin/in

in which

c = compressive strain at failurec

C = estimated uniaxial compressive strain = 11.68 pin/inCs

= tensile strain at failuret

ts= estimated uniaxial tensile strain = 4.25 pin/in

s = standard error of estimate = 25.17
C
t = time of static load application = 600,000 mss

t = time since load application at which failure occurs
r 2

This equation explains r = 0.6314 of the strain variability in Table 3.2.

That there is more residual variation of strain than there is of strength is

not unexpected since the strain distribution of the control cylinders varied

more than their strength distributions also. The estimated cs and ts

refer to hypothetical uniaxial strain loadings and thus should not be compared

to the strains measured for uniaxial stress loadings.

The biaxial dependence of strains-at-failure is shown in Figure 4.11.

The dynamic data are seen to follow the trend of equation 2. Note that they

are consistent with strains-at-static failure taken from Kupfer, Hilsdorf, and
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Rusch (1969), as well. Although smaller in magnitude, the dynamic strains-at-

failure are also seen to be in approximately the same ratio as the static con-

trol data.

The independence of biaxial strain on dynamic loading, implied by equa-

tion 2, is shown in Figure 4.12. There is seen to be no significant depen-

dence of the biaxial strain measured by the form of equation 2 upon the load-

ing time t . The static control cylinder tests also agree with this result.r

This independence of strain and loading time has been previously noted under

uniaxial conditions (as in Figure 1.2).

A useful implication of these strain results is that failure under dy-

namic, biaxial loadings might be judged by a strain criterion rather than a

strength criterion. An advantage of the former is that the same standard

would be applicable for dynamic and static loadings. However, the standard

error of estimate, and hence uncertainty, of the strain criteron would be

greater than that of a stress criterion.

4.5 STRESS-STRAIN BEHAVIOR

The two previous sections have established that tensile-conibressive

strengths increase with the loadings rapidity while the failure strains remain

constant. This dynamic stiffening is inconsistent with the assumption of lin-

early elastic behavior used in practical design analyses. However, it resem-

bles the response of viscoelastic models which linearly relate stress to strain

rate as well as strain and which have been proposed for the uniaxial behavior

of concrete by Hatano (1960), Hatano and Tsutsumi (1959), and Krillov (1977).

In addition to this rate dependency, the static stress strain data reflect non-

linearities which increase in importance as the biaxial load becomes more com-

pressive in character. A viscoplastic material model, which nonlinearly re-

lates stress, strain, and strain rate (Bazant and Oh, 1982), may explain both

of these violations of linear elasticity. It would seem nrudent to recommend

no improvement to the design practice of modeling stress-strain behavior as

linearly elastic until this or some other theoretical model is shown to conform

to this data and until the broader implications of such a model are appreciated.

4.6 FURTHER RESEARCH

This study has usefully advanced seismic design by establishing the dy-

namic dependence of tensile-compressive stress and strain at failure. However,
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additional research is desirable to better comprehend the stress-strain behav-

ior of concrete which is also important to the seismic analysis of dams. This

project has provided data base for such research. ViscoelastIc material models

should now be compared to these results. Contingent on the results of this

comparison, viscoplastic models may also warrant investigation. Thereafter,

the behavior under other biaxial stress states and under cyclic loadings

should be examined. Finally, the dependence of dynamic, biaxial behavior on

the constituents of the concrete mixture remains to be determined.
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CHAPTER 5

CONCLUSIONS

The tensile-compressive behavior of concrete in monotonically dynamic

stress states can be investigated with a hollow cylindrical specimen subjected

to axial and internal pressure loads by a large, open-loop hydraulic device.

Under combined dynamic loading, the tensile stress-at-failure decreases

as the simultaneously acting compressive stress is increased.

For tensile-compressive loading, the strength increases as the stresses

are applied more rapidly while the strains-at-failure remain constant with

respect to loading time.

The stress-strain behavior of concrete under dynamic biaxial loading is

more complex than the linearly elastic behavior assumed in seismic design

analyses.
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